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Abstract. The main purpose of this paper is to study normed hypervec-

tor spaces. We generalize some definitions such as basis, convexity, op-

erator norm, closed set, Cauchy sequences, and continuity in such spaces

and prove some theorems about them.
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1. Introduction

Let P (X) be the power set of a set X , P �(X) = P (X)\{∅}, and K a field.
A hypervector space over K that is defined in [7], is a quadruplet (X, +, ◦, K)
such that (X, +) is an abelian group and

◦ : K × X −→ P �(X)

is a mapping that for all a, b ∈ K and x, y ∈ X the following properties holds:

(i) (a + b) ◦ x ⊆ (a ◦ x) + (b ◦ x),
(ii) a ◦ (x + y) ⊆ (a ◦ x) + (a ◦ y),
(iii) a ◦ (b ◦ x) = (ab) ◦ x, where a ◦ (b ◦ x) = { a ◦ y : y ∈ b ◦ x },
(iv) (−a) ◦ x = a ◦ (−x)
(v) x ∈ 1 ◦ x.
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A hypervector space is called strongly left distributive (respectively, strongly
right distributive), if equality holds in (i) (respectively, in (ii)) and is called
good, if for every λ ∈ K, λ ◦ 0 = {0}.

Note that every vector space is a hypervector space that is strongly left and
right distributive and specially, every field is a hypervector space over itself.

A non-empty subset H of a hypervector space X over a field K is called a
subspace of X if the following holds:

(i) H − H ⊆ H ,
(ii) a ◦ H ⊆ H , for every a ∈ K,

where H − H = {a − b : a, b ∈ H}. Let (X, +, ◦, K) be a hypervector
space. Suppose that for every a ∈ K, |a| denoted the valuation of a in K. A
pseudonorm on X that is defined in [8], is a mapping

|| . || : X −→ R

that for all a ∈ K and x, y ∈ X has the following properties:

(i) ||0|| = 0,
(ii) ||x + y|| � ||x|| + ||y||,
(iii) sup ||a ◦ x|| = |a| ||x||.
A pseudonorm on X is called a norm, if:

||x|| = 0 ⇐⇒ x = 0.

Let (X, +, ◦, K) and (Y, +′, ◦′, K) be two hypervector spaces. As defined in
[7], a strong homomorphism between X and Y is a mapping

f : X −→ Y

such that for all a ∈ K and x, y ∈ X the following hold:

(i) f(x + y) = f(x) +′ f(y),
(ii) f(a ◦ x) = a ◦′ f(x).

A linear form is a strong homomorphism f : X −→ K. A strong homomor-
phism is called good, if ker f is a subspace of X . Clearly, every linear form is
good.

Theorem 1.1. [7, Theorem 2]. Let X and Y be two hypervector spaces and
f a strong homomorphism between them. Then kerf is a subspace of X if and
only if Y is a good hypervector space.

This shows that the kernel of every linear form is a subspace of X .
For a field K and a natural number n, the set of all n×1 matrices over K is

denoted by Kn, and for every X ∈ Kn, we denote the transpose of X by Xt.
The concepts of hyperstructures were introduced by a lot of mathematicians

in many branches of mathematics such as algebra, geometry and analysis (see
[4-6]). Most of them tried to generalize definitions and proved some famous
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theorems by replacing new definitions by classical ones. In this paper we con-
sider normed hypervector spaces, and generalize some definitions such as basis,
dimension, convexity, operator norm, closed set, Cauchy sequences, and con-
tinuity in such spaces and prove some important theorems about hypervector
spaces.

2. Basis for Hypervector Spaces

The basis of a vector space has a very important role in linear algebra. We
are interested to define a basis for a hypervector space.

Definition 2.1. Let (X, +, ◦, K) be a strongly left distributive hypervector
space. A subset A = {xλ}λ∈Λ of X is said to be an independent set if for every
n ∈ N, λ1, . . . , λn ∈ K, x1, . . . , xn ∈ X, and x ∈ X, the following hold:

(i) 0 ◦ x ⊆ λ1 ◦ x1 + · · · + λn ◦ xn implies that λ1 = · · · = λn = 0,
(ii) λ1 ◦ x1 + · · · + λn ◦ xn ⊆ 0 ◦ x implies that λ1 = · · · = λn = 0.

An independent subset A of X is called a basis if for every x ∈ X , there
are n ∈ N, non-zero elements λ1, . . . , λn ∈ K, and x1, . . . , xn ∈ A such that
1◦ x ⊆ λ1 ◦ x1 + · · ·+λn ◦ xn. The hypervector space is said finite dimensional
if it has a finite basis.

Remark 2.2. Since X is a strongly left distributive hypervector space, it is
easily seen that for every x ∈ X, this representation is unique.

Definition 2.3. Let (X, +, ◦, K) and (Y, +′, ◦′, K) be two hypervector spaces.
A strong homomorphism f : X −→ Y is called one to one, if for every x, y ∈ X,
x �= y implies that f(x) �= f(y).

Theorem 2.4. Let (X, +, ◦, K), (Y, +′, ◦′, K) be two strongly left distributive
hypervector spaces and f : X −→ Y a strong homomorphism. If f is one to
one and onto, and B = {xα}α∈A is a basis for X, then B′ = {f(xα)}α∈A is a
basis for Y .
Proof. Let λ1, . . . , λn ∈ K, f(x1), . . . , f(xn) ∈ B′. Let y ∈ Y be such that
0 ◦′ y ⊆ λ1 ◦′ f(x1) + · · · + λn ◦′ f(xn). Since f is onto, there is x ∈ X such
that f(x) = y. So we have

f(0◦ x) = 0◦′ f(x) = 0◦′ y ⊆ f(λ1◦ x1)+· · ·+f(λn◦ xn) = f(λ1◦ x1+· · ·+λn◦ xn).

Since f is one to one, we have 0◦ x ⊆ λ1 ◦ x1 + · · ·+λn ◦ xn. Hence λ1 = · · · =
λn = 0. Similarly, it is shown that if λ1 ◦′ f(x1) + · · · + λn ◦′ f(xn) ⊆ 0 ◦′ y,
then λ1 = · · · = λn = 0. So B′ is an independent set.

On the other hand B is a basis for X , there are non-zero elements λ1, . . . , λn ∈
K and x1, . . . , xn ∈ B such that 1 ◦ x ⊆ λ1 ◦ x1 + · · · + λn ◦ xn. So

y ∈ 1 ◦ y = 1 ◦ f(x) = f(1 ◦ x) ⊆ λ1 ◦′ f(x1) + · · · + λn ◦′ f(xn).

Therefore B′ is a basis for Y and the proof is complete. �
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Theorem 2.5. Let (X, +, ◦, K) be a strongly left distributive hypervector space
and {x1, . . . , xn} a basis for X. If {y1, . . . , ym} is an independent set in X,
then m � n.
Proof. By contradiction, suppose that m > n. For every j, 1 � j � m, there
are cij , 1 � i � n such that 1 ◦ yj ⊆ c1j ◦ x1 + · · ·+ cnj ◦ xn. If C = (cij), then
C is an n×m matrix with m > n and so the equation CX = 0 has a non-zero
solution (λ1, . . . , λm)t ∈ Km. Therefore

λ1 ◦ y1 + · · · + λm ◦ ym ⊆ λ1 ◦ (1 ◦ y1) + · · · + λm ◦ (1 ◦ ym)

⊆ λ1 ◦ (c11 ◦x1 + · · ·+ cn1 ◦ xn)+ · · ·+ λm ◦ (c1m ◦ x1 + · · ·+ cnm ◦ xn)

= (λ1c11 + · · · + λmc1m) ◦ x1 + · · · + (λ1cn1 + · · · + λmcnm) ◦ xn

= 0 ◦ x1 + · · · + 0 ◦ xn = 0 ◦ (x1 + · · ·xn).

Since {y1, . . . , ym} is an independent set, then λ1 = · · · = λm = 0, a contradic-
tion. So m � n and the proof is complete. �

Corollary 2.6. If (X, +, ◦, K) is a finite dimensional strongly left distributive
hypervector space, then every two bases of X have the same cardinality.

Definition 2.7. Let X be a finite dimensional strongly left distributive hyper-
vector space, the dimension of X is the cardinality of its bases and is denoted
by dimX.

Corollary 2.8. Let (X, +, ◦, K) be a finite dimensional strongly left distribu-
tive hypervector space and dim X = n. Then every subset of X with at least
n + 1 elements is not an independent set.

3. Linear Forms

We begin by the following definition.

Definition 3.1. Let (X, +, ◦, K) be a hypervector space. A proper subspace
M of X is called a hyperplane if for every x ∈ X, there is λ ∈ K such that
x ∈ λ ◦ x0 + M , for every x0 ∈ X that 1 ◦ x0 ∩ M = ∅.

Lemma 3.2. Let (X, +, ◦, K) be a strongly left distributive hypervector space,
M a hyperplane of X, and x0 ∈ X such that 1 ◦ x0 ∩ M = ∅. Then for every
x ∈ X, there is a unique λ ∈ K such that x ∈ λ ◦ x0 + M .
Proof. Suppose there are λ1, λ2 ∈ K such that λ1 �= λ2 and x ∈ λ1 ◦ x0 + M

and x ∈ λ2 ◦ x0 + M . So there are a, b ∈ M , z ∈ λ1 ◦ x0, and w ∈ λ2 ◦ x0

such that x = z + a and x = w + b. Therefore z − w = b − a. So

z − w ∈ λ1 ◦ x0 − λ2 ◦ x0 = (λ1 − λ2) ◦ x0.

Since M is a subspace, then (λ1 − λ2)−1(b − a) ⊆ M . Hence

(λ1 − λ2)−1 ◦ (z − w) = (λ1 − λ2)−1(b − a) ⊆ M ∩ 1 ◦ x0,

a contradiction. This completes the proof. �
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Theorem 3.3. Let (X, +, ◦, K) be a hypervector space. We have the following:

(i) If f : X −→ K is a linear form, then ker f is a hyperplane.
(ii) If X is a strongly left distributive hypervector space and M a hyperplane

of X, then there is a linear form, f , over X such that M ⊆ ker f .

Proof. (i) Let f : X −→ K be a linear form. By Theorem , ker f is a subspace
of X . Suppose x0 is in X such that 1 ◦ x0 ∩ ker f �= ∅ and x ∈ X . Clearly,
f(x0) �= 0. It suffices to prove that x ∈ f(x)

f(x0)
◦ x0+ker f . Let y ∈ x− f(x)

f(x0)
◦ x0,

then

f(y) ∈ f(x − f(x)
f(x0)

◦ x0) =
{

f(x − z) : z ∈ f(x)
f(x0)

◦ x0

}

= f(x) −
{

f(z) : z ∈ f(x)
f(x0)

◦ x0

}
= f(x) − f

(
f(x)
f(x0)

◦ x0

)

= f(x) − f(x)
f(x0)

f(x0) = {0}.

So y ∈ ker f . Since x− y ∈ f(x)
f(x0)

◦ x0, then x = (x− y)+ y ∈ f(x)
f(x0)

◦ x0 + ker f

and ker f is a hyperplane.
(ii) Let X be a strongly left distributive hypervector space and M a hy-

perplane. Suppose x0 is in X such that 1 ◦ x0 ∩ M �= ∅. By Lemma , for
every x ∈ X , there is a unique λx ∈ K such that x ∈ λx ◦ x0 + M . Define
f : X −→ K by f(x) = λx, then f is a linear form. Because suppose x, y ∈ X

and α ∈ K. Then x ∈ λx ◦ x0 + M and y ∈ λy ◦ x0 + M . So we have

x + y ∈ λx ◦ x0 + M + λy ◦ x0 + M ⊆ (λx + λy) ◦ x0 + M.

Therefore f(x + y) = λx + λy = f(x) + f(y). Also,

α ◦ x ⊆ α ◦ (λx ◦ x0 + M) = (αλx) ◦ x0 + α ◦ M ⊆ (αλx) ◦ x0 + M.

Hence f(α ◦ x) = αλx = αf(x), and f is a linear form.
Now, let x ∈ M . Since X is strongly left distributive hypervector space,

then
0 ∈ 0 ◦ x0 − 0 ◦ x0 ⊆ 0 ◦ x0.

So x ∈ 0 ◦ x0 + M . It means that f(x) = 0 and the proof is complete. �
Note that if f is a linear form and λ ∈ K, then λf , is also a linear form,

where (λf)(x) = λf(x), for every x ∈ X .

Theorem 3.4. Let (X, +, ◦, K) be a hypervector space and f1, f2 two linear
forms over X such that ker f1 = ker f2. Then f2 = kf1 for some k ∈ K.
Proof. It is trivial if f1 = 0, otherwise let x0 ∈ X be such that f1(x0) �= 0.
Therefore f2(x0) �= 0, too. Put k = f2(x0)

f1(x0)
and let x ∈ X . It is enough to prove

that f2(x) = kf1(x). Let α = f1(x)
f1(x0)

, then f1(x) = αf1(x0) = f1(α ◦ x0). So
for every y ∈ α◦ x0, we have f1(x− y) = 0. Hence x−α◦ x0 ⊆ ker f1 = ker f2,
and it means that

f2(x) = f2(α ◦ x0) = αf2(x0) = αkf1(x0) = kf1(x).
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This completes the proof. �
4. Continuous Strong Homomorphisms

In this section we define bounded strong homomorphisms in order to con-
struct a norm on them

Definition 4.1. Let (X, +, ◦, || ||, K) and (Y, +′, ◦′, || ||′, K) be two normed
hypervector spaces. A strong homomorphism f : X −→ Y is called bounded if
there exists M � 0 such that ||f(x)||′ � M ||x||, for every x ∈ X.

Theorem 4.2. Let K be a field, (X, +1, ◦1, || . ||1, K), (Y, +2, ◦2, || . ||2, K)
two normed hypervector spaces, and f : X −→ Y a strong homomorphism.
Then the following are equivalent:

(i) f is continuous,
(ii) f is continuous at x0 ∈ X,
(iii) f is bounded.

Proof. Clearly, (i) implies (ii). To prove (ii) implies (iii) let f be continuous at
x0 ∈ X . Then for ε = 1, there is δ > 0 such that ||f(z)f(x0)||2 < 1, whenever
||z − x0||1 < δ. Now, let y ∈ X and put A = x0 + ( δ

||y||1 ◦ y). Hence if w ∈ A,
then w = x0 + v, for some v ∈ δ

||y||1 ◦ y. Therefore

||w − x0||1 = ||x0 + v − x0||1 = ||v||1 � sup || δ

||y||1 ◦ y||1 =
δ

||y||1 ||y||1 = δ,

and so ||f(w) − f(x0)||2 < 1. It means that ||f(v)||2 = ||f(w − x0)||2 < 1.
Hence ||f(v)||2 < 1, for every v ∈ ( δ

||y||1 ◦ y). So sup ||f( δ
||y||1 ◦ y)||2 < 1 and it

implies that

(
δ

||y||1 )||f(y)||2 = sup || δ

||y||1 ◦′ f(y)||2 < 1.

Therefore ||f(y)||2 < 1
δ ||y||1. Since 1

δ > 0, we conclude that f is bounded.
To show that (iii) implies (i), let x0 ∈ X and ε > 0. Since f is bounded,

there is M > 0 such that ||f(x)||2 � M ||x||1, for every x ∈ X . Suppose that
δ < ε

M . For every y ∈ X , ||y − x0||1 < δ implies that

||f(y) − f(x0)||2 = ||f(y − x)||2 � M ||y − x0||1 < M
ε

M
= ε.

So f is continuous at x0, and the proof is completed. �

Definition 4.3. Let (X, +1, ◦1, || . ||1, K), (Y, +2, ◦2, || . ||2, K) be two normed
hypervector spaces. For a bounded strong homomorphism f : X −→ Y , we
define the norm of f by

||f ||� = sup
{

sup ||f(
1

||x|| ◦ x)||′ : 0 �= x ∈ X

}
.
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Remark 4.4. Note that

||f ||� = sup
{

sup || 1
||x||1 ◦2 f(x)||2 : 0 �= x ∈ X

}

= sup
{ ||f(x)||2

||x||1 : 0 �= x ∈ X

}

= inf{M : ||f(x)||2 � M ||x||1 for all x ∈ X}.

Definition 4.5. For a normed hypervector space X = (X, +, ◦, || . ||, K), if
{xn}n∈N is a sequence in X, then

lim
n→∞xn = x ⇐⇒ lim

n→∞ ||xn − x|| = 0.

In [8], it is proved that if X is a normed hypervector space, then for every
x ∈ X , we have

(i) || − x|| = ||x||,
(ii) ||x|| � 0.

Remark 4.6. Since for every pair x, y ∈ X, we have ||x + y|| � ||x|| + ||y||
and || − x|| = ||x||, it is easily checked that | ||x|| − ||y|| | � ||x − y||. It shows
that if limn→∞ xn = x, then limn→∞ ||xn|| = ||x||.

Lemma 4.7. Let (X, +, ◦, || . ||, K) be a normed hypervector space, λ ∈ K,
and {xn}n∈N, {yn}n∈N two sequences in X such that limn→∞ xn = x and
limn→∞ yn = y. Then the following hold:

i) limn→∞(xn + yn) = (x + y),
ii) If limn→∞ xn = 0, then limn→∞ λ◦ xn = 0 (in the sense that for every

sequence {yn} that yn ∈ λ ◦ xn, limn→∞ yn = 0).

Proof. i) This can be deduced simply from the inequality:

|| (xn + yn) − (x + y) || � ||xn − x|| + ||yn − y||.
ii) It is easily proved, since sup ||λ ◦ xn|| = |λ| ||xn||. The proof is complete.

�

Definition 4.8. Let (X, +, ◦, || . ||, K) be a normed hypervector space. A
sequence {xn} in X is said to be a Cauchy sequence if for every ε > 0, there is
N ∈ N such that ||xn − xm|| < ε, for every m, n � N .

Theorem 4.9. Let (X, +1, ◦1, || . ||1, K), (Y, +2, ◦2, || . ||2, K) be two normed
hypervector spaces and f : X −→ Y a strong homomorphism. Then the follow-
ing are equivalent:

(i) f is continuous,
(ii) f sends Cauchy sequences in X to Cauchy sequences in Y ,
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(iii) f sends convergent sequences in X to convergent sequences in Y .

Proof. First, we show that (i) implies (ii). Suppose {xn} is a Cauchy sequence
in X . Then

||f(xn) − f(xm)||2 = ||f(xn − xm)||2 � ||f ||�||xn − xm||1,
for m, n ∈ N. Since ||f ||� < ∞, then {f(xn)} is a Cauchy sequence in Y .

Next, to prove (i) implies (iii), let {xn} be a sequence in X such that
limn→∞ xn = x. Then

||f(xn) − f(x)||2 = ||f(xn − x)||2 � ||f ||�||xn − x||1.
Since ||f ||� < ∞, it means that limn→∞ f(xn) = f(x).

Last, we show that (ii) implies (i) and (iii) implies (i). So assume that f

is not continuous and therefore by Theorem , it is not bounded and for every
n ∈ N, there is xn ∈ X such that

sup ||f(
1

||xn||1 ◦ xn)||2 = sup || 1
||xn||1 ◦′ f(xn)||2 > n.

Hence there is yn ∈ 1
||xn||1 ◦ xn such that ||f(yn)||2 > n, for every n ∈ N. Also

||yn||1 � sup || 1
||xn||1 ◦ xn||1 =

1
||xn||1 ||xn||1 = 1.

If Wn = 1√
n
◦ yn, then

sup ||f(Wn)||2 = sup ||f(
1√
n
◦ yn)||2 =

sup || 1√
n
◦′ f(yn)||2 =

1√
n
||f(yn)||2 >

n√
n

=
√

n.

So there is wn ∈ Wn such that ||f(wn)||2 >
√

n. Clearly, {f(wn)} is not
convergent. On the other hand

sup ||Wn||1 = sup || 1√
n
◦ yn||1 � 1√

n
||yn||1 � 1√

n
,

and therefore ||wn||1 � 1√
n
, for every n ∈ N. So {wn} is a Cauchy sequence

that limn→∞ wn = 0, and the proof is complete. �

Definition 4.10. Let (X, +, ◦, || ||, K) be a normed hypervector space. The
subset A ⊆ X is called closed if for every sequence {xn} in X, limn→∞ xn = x

implies x ∈ X.

Theorem 4.11. Let (X, +, ◦, || ||, K) be a normed hypervector spaces and
f : X −→ K a linear form. Then ker f is a closed subspace of X if and only if
f is continuous.
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Proof. First, suppose that ker f is a closed subspace of X . By contradiction,
assume that f is not continuous. So it is not bounded and there is xn ∈ X

such that

sup |f(
1

||xn|| ◦ xn)| =
|f(xn)|
||xn|| > n,

for every n ∈ N. Therefore there is yn ∈ 1
||xn|| ◦ xn such that |f(yn)| > n.

Clearly, for every n ∈ N,

||yn|| � sup || 1
||xn|| ◦ xn|| =

1
||xn|| ||xn|| = 1.

Now, let Zn = y1 − f(y1)
f(yn) ◦ yn. If z ∈ Zn, then there is w ∈ f(y1)

f(yn) ◦ yn such
that z = y1 − w and

f(z) = f(y1) − f(w) ∈ f(y1) − f(
f(y1)
f(yn)

◦ yn) = f(y1) − f(y1)
f(yn)

f(yn) = {0}.

For every n ∈ N, suppose that zn ∈ Zn. We have

||zn − y1|| � sup ||y1 − f(y1)
f(yn)

◦ yn − y1|| =

sup || f(y1)
f(yn)

◦ yn|| = | f(y1)
f(yn)

|||yn|| <
|f(y1)|

n
.

So limn→∞ zn = y1. But y1 /∈ ker f , a contradiction. So f is continuous.
Last, suppose that f is a continuous linear form, and {xn} a sequence in

ker f . So f(xn) = 0, for every n ∈ N. Now, for an arbitrary ε > 0, there is
n ∈ N such that

|f(x) − 0| = |f(x) − f(xn)| < ε.

Therefore x ∈ ker f and this completes the proof. �
Acknowledgement. The authors are grateful to the referees for their careful
reading and helpful suggestions.
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